
Lupus (2017) 26, 1239–1251

journals.sagepub.com/home/lup

REVIEW

Ultraviolet-A1 irradiation therapy for systemic

lupus erythematosus

H McGrath Jr
Veterans Administration, New Orleans, LA, USA

Systemic lupus erythematosus (lupus, SLE) is a chronic autoimmune disease characterized by
the production of autoantibodies, which bind to antigens and are deposited within tissues to
fix complement, resulting in widespread systemic inflammation. The studies presented herein
are consistent with hyperpolarized, adenosine triphosphate (ATP)-deficient mitochondria
being central to the disease process. These hyperpolarized mitochondria resist the depolariza-
tion required for activation-induced apoptosis. The mitochondrial ATP deficits add to this
resistance to apoptosis and also reduce the macrophage energy that is needed to clear apop-
totic bodies. In both cases, necrosis, the alternative pathway of cell death, results. Intracellular
constituents spill into the blood and tissues, eliciting inflammatory responses directed at their
removal. What results is ‘‘autoimmunity.’’ Ultraviolet (UV)-A1 photons have the capacity to
remediate this aberrancy. Exogenous exposure to low-dose, full-body, UV-A1 radiation gen-
erates singlet oxygen. Singlet oxygen has two major palliative actions in patients with lupus
and the UV-A1 photons themselves have several more. Singlet oxygen depolarizes the hyper-
polarized mitochondrion, triggering non-ATP-dependent apoptosis that deters necrosis. Next,
singlet oxygen activates the gene encoding heme oxygenase (HO-1), a major governor of
systemic homeostasis. HO-1 catalyzes the degradation of the oxidant heme into biliverdin
(converted to bilirubin), Fe, and carbon monoxide (CO), the first three of these exerting
powerful antioxidant effects, and in conjunction with a fourth, CO, protecting against
injury to the coronary arteries, the central nervous system, and the lungs. The UV-A1 photons
themselves directly attenuate disease in lupus by reducing B cell activity, preventing the sup-
pression of cell-mediated immunity, slowing an epigenetic progression toward SLE, and ame-
liorating discoid and subacute cutaneous lupus. Finally, a combination of these mechanisms
reduces levels of anticardiolipin antibodies and protects during lupus pregnancy. Capping all
of this is that UV-A1 irradiation is an essentially innocuous, highly manageable, and com-
fortable therapeutic agency. Lupus (2017) 26, 1239–1251.
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Introduction

Falling within the electromagnetic spectrum
between X-rays and visible light, the ultraviolet
(UV) spectrum is conventionally divided into wave-
length bands of increasing length and decreasing
energy. Vacuum UV (<200nm), UV-C (200–

280nm), UV-B (280–320nm) and UV-A (320–
400nm) comprise the spectrum. The UV-A band
has been further divided into UV-A2 (320–340nm)
and UV-A1 (340–400nm) because UV-A2
shares properties with UV-B1 and UV-A1 has prop-
erties that overlap with visible light.2 Different
chromophores (photon-absorbing molecules)
absorb different UV wavelengths, determining their
photo-biological effects. These differences account
for the healing action of UV-A1 wavelengths when
contrasted with the noxious effects of the shorter UV
wavelengths in patients with lupus.3–14

The primary target of UV photons is the skin.
The shortest terrestrial band of wavelengths, UV-B,
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penetrates to the superficial papillary dermis, deep
enough to be absorbed by and do damage to epi-
dermal DNA.15 The DNA damage alters gene
translation and function and in lupus triggers
anti-double-stranded DNA (anti-dsDNA) antibody
production. Repair of the DNA draws on compro-
mised adenosine triphosphate (ATP) stores16 for
repair. In addition, the shorter UV wavelengths
such as UV-B suppress cell-mediated immunity
(CMI),17 already suppressed in systemic lupus ery-
thematosus (SLE), and these wavelengths promote
antigen translocation, a phenomenon that leads to
epidermal cell lysis in patients with lupus.18–20

In contrast, UV-A1 photons, which are not
absorbed by DNA, penetrate deeply to reach the
high levels of immunoreactants observed in the
dermal-epidermal junction.21 Inasmuch as overflow
of these immunoreactants into the blood and tis-
sues accounts for much of the systemic expression
of disease in patients with SLE, the modulatory
effect of UV-A1 photons similarly reaches every
organ system.22

Early investigations

The mitigating effects of the longest wavelengths of
UV radiation on a systemic disease were first
observed in a study using the New Zealand
Black/New Zealand White (NZB/NZW) mouse
model of lupus.3 In this animal, the UV-A
wavelengths not only lacked the toxicity of UV-B
wavelengths but unexpectedly attenuated disease
activity. UV-A radiation reversed the reduced
lymphocyte mitogen responsiveness, decreased the
extent of spleen enlargement, reduced the levels of
anti-dsDNA antibodies and promoted the survival
of the treated mice during the study period, as all of
their untreated littermates died along the usual
mortality curve for this model. As shown in a
follow-up study, the longest UV-A wavelengths
comprising the UV-A1 band were responsible for
this salutary outcome.4

Human studies followed. TL10R Philips lamps,
fitted with filters that transmit only UV-A1 wave-
lengths, were employed. In a series of studies, low-
dose, full-body UV-A1 irradiation significantly
decreased disease activity (systemic lupus activity
measure (SLAM)) scores of patients with lupus
(Figure 1), inducing an early reversal of fatigue,
depression, and cognitive dysfunction and
subsequently decreasing the inflammatory symp-
toms of pleurisy, joint pain, and mouth ulcers.

Photosensitivity exhibited the latest response. The
effectiveness persisted and even increased nonsigni-
ficantly with less-frequent weekly therapy over sev-
eral years (Figure 2).

Apoptosis and UV-A1

Apoptosis, or programmed cell death, is the
ordered destruction and safe disposal of cells by
macrophages and immature dendritic cells.23 The
efficient activation of apoptosis is critical for the
maintenance of homeostasis, the avoidance of
necrosis, and the removal of excess T and B cells
to terminate an immune response.24–26 The result-
ing apoptotic bodies must be quickly cleared to
avoid necrosis and prevent coagulation.27,28

Apoptosis is flawed in patients with lupus. The
mitochondria, centers of energy production and
governors of intrinsic apoptosis, are abnormal,
exhibiting hyperpolarization and ATP deficits.29,30

The hyperpolarized ATP-deficient mitochondria
resist the depolarization required to initiate activa-
tion-induced apoptosis. Overexpression of the
BCL-2 family of genes, which similarly inhibits
activation-induced apoptosis, further increases the
mitochondrial resistance to depolarization.31,32

Figure 1 Disease activity during ultraviolet (UV)-A1 radi-
ation therapy, as determined by the systemic lupus activity
measure (SLAM) scores. During the first six-week, double-
blind, five-day/week phase of the study, Group A patients
(black circles) received UV-A1 (__) for three weeks and then
received placebo (- - - ) irradiation for three weeks. Group B
patients (black triangles) received placebo (- - - ) irradiation
for three weeks and then received UV-A1 (__) irradiation for
three weeks. During the unblinded phase of the study begin-
ning at week 6, all patients received UV-A1 irradiation three
days/week for six weeks (*p< 0.05; **p< 0.01).
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These changes result in a shift toward the default
mechanism of necrosis, or to spontaneous
apoptosis,33 the latter possibly an escape from the
mitochondrial block.

This failure to complete apoptosis and the lack in
sufficient mitochondrial ATP to fuel macrophages
both predispose to necrosis.34,35 Necrosis is a toxic
form of cell death caused by the release of
autologous cell constituents into the blood and sur-
rounding interstitial tissues. These self-or auto-con-
stituents elicit a dendritic cell-coordinated T and B
cell-mediated inflammatory immune response dir-
ected at preventing the escape of these auto-consti-
tuents into the blood and tissues. This protective
inflammatory immune response is an autoimmune
response as it is the released auto-constituents that
drive it.

In contrast to these actions, UV-A1-generated
singlet oxygen elicits a state of intense oxidative
stress sufficient to activate the intrinsic apoptotic
pathway by opening the mitochondrial megapores
in the outer mitochondrial membrane.37,38 This
results in a collapse of the electrochemical gradient
across the membrane and the subsequent release of
apoptosis-initiating factors and cytochrome C, indu-
cing immediate or pre-programmed apoptosis.37

This apoptotic mechanism is not ATP dependent,
fostering, when added to the singlet oxygen-induced
activation of energy-generating autophagy,39 a res-
toration of the diminished phagocytic cell ATP
reserves required for the macrophage-mediated
clearance of apoptotic bodies.

Through the ATP-sparing induction of apoptosis
and perhaps its activation of energy-generating
autophagy,36,40 UV-A1 irradiation compensates
for a low intracellular ATP/adenosine diphosphate
(ADP) ratio.29 In this manner, UV-A1 photons
protect against the decreases in macrophage
energy required to clear apoptotic bodies. In add-
ition, these photons reduce the overexpression of
BCL-2, an inhibitor of apoptosis.31,32,41

The drugs currently used to treat lupus highlight
the central role of apoptosis, as virtually all are
proapoptotic,42,43 These include glucocorticoids,42

cytotoxic agents,44 hydroxychloroquine,45 myco-
phenolic acid,46 and belimumab.47 Drugs with the
opposite action support this paradigm, estrogens
and tumor necrosis factor inhibitors facilitating
the development of lupus.47,48

B cells

Interferon-gamma (IFN-gamma), which induces
the release of soluble B-lymphocyte stimulator
(sBLyS) by monocytes/macrophages, is overex-
pressed in peripheral T cells in patients with
lupus.49,50 sBLyS contributes to the immunopatho-
genesis of lupus by promoting B cell activation and
maturation and by inhibiting B cell apoptosis.51

Increased expression of the sBLyS mRNA directly
correlates with increased disease activity in patients
with SLE.52,53 Low-dose, full-body UV-A1 irradia-
tion-induced singlet oxygen production suppresses
the secretion of IFN-gamma secretion and parallels
the UV-A1-induced mitigation of clinical disease
activity in patients with lupus.11

In vitro, in vivo, and ex vivo studies all support
the UV-A1-induced suppression of B cells and B
cell activity. In vitro, UV-A1 causes pronounced
non-nuclear damage, including cytoskeletal
damage.54,55 Ex vivo, UV-A1 photons decreases B
cell activity; 2 J/cm2 of UV-A1 irradiation delivered
through normal skin obtained from cosmetic breast
reduction surgery killing 20% of T and B cells and
decreasing immunoglobulin (Ig)G, IgM, IgA, and
IgE production.56 In vivo, as mentioned above,
singlet oxygen acts to suppress IFN-gamma
secretion.11

Figure 2 Changes in the systemic lupus activity measure
(SLAM) scores from the baseline in patients subjected to
long-term treatment with low-dose ultraviolet (UV)-A1 ther-
apy. Six patients from the original group were followed for an
average of 3.4 years and received one to two exposures per
week, amounting to a total of 6–15 J/m2 per week. The graph
shows the progression of disease activity during and after the
initial 12 weeks and for the full 3.4 years (*p< 0.05).
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Urocanic acid (UCA)

Although UV-A1 photons suppress humoral
immunity, they have the opposite effect on
CMI,57,58 abnormally suppressed in patients with
SLE.59 Exposure to sunlight, which further
suppresses lupus-suppressed CMI, may partially
account for the toxicity of sunlight in patients
with the disease.60,61 The short solar wavelengths,
UV-B and UV-A2, are responsible for the
suppression. UV-A1 wavelengths block this sup-
pression62,63 and even reverse it.64 This is reminis-
cent of the NZB/NZW mouse model, in which
UV-A1 wavelengths increased CMI and reduced
disease activity.3,4 The contrasting actions of
UV-B and UV-A1 wavelengths on CMI parallel
the contrasting toxic and remedial actions of
UV-B and UV-A1 wavelengths on humans and ani-
mals with lupus, suggesting that UCA plays a role
in the disease.

UCA is a natural sunscreen that protects
against DNA damage. It constitutes approxi-
mately 0.05% of the dry weight of the epidermis
in humans,65 reflecting its vital biological role.
Solar UV-B photons isomerize UCA from its
resting trans- form to the active cis- isomer,
which suppresses CMI. Even the UV-B photons
emitted from uncovered fluorescent lamps isomer-
ize UCA to its active cis isomer13 in vitro and
increase disease activity in vivo.66 Teleologically,
the suppression of CMI may serve to protect
against solar-mediated actinic changes that
would predispose patients to immune-mediated
rashes and pruritus with every sun exposure. In
patients with lupus, who are already CMI sup-
pressed, this added suppression appears to be
counter-productive, exacerbating disease activity.

UV-A1 photons first reverse the UV-B (i.e. cis-
UCA)-induced suppression of CMI through oxida-
tive destruction of cis-UCA by singlet oxygen67 and
then through the singlet oxygen-induced expression
of the gene encoding heme oxygenase-1 (HO-1), an
enzyme that releases CO, a mediator capable of
abrogating the suppression of CMI. CO does this
by binding and stimulating soluble guanylyl
cyclase, a catalyst for the synthesis of cyclic guano-
sine monophosphate (cGMP).68,69 Increased cGMP
levels parallel the decreases in cis-UCA-induced
suppression of CMI.70

The reason for the innate suppression of CMI in
patients with lupus remains unknown. However,
because UV-A1 photons, which reverse the sup-
pression, mitigate disease, CMI seems key in dis-
ease pathogenesis.

Epigenetics

Epigenetics pertains to environmental influences
that modify gene expression without changing the
genomic DNA. UV-A1 and UV-B photons have
opposing epigenetic effects on patients with SLE.
Only 25%–45% of monozygotic twins of a patient
with lupus develop the disease, suggesting that the
environment regulates changes in the DNA. This
has resulted in what is designated twin discord-
ance.71 The reasons for this discordance are attrib-
uted to a number of factors; the principal factor is a
deficit in DNA methylation, a reaction that sup-
presses unwarranted gene expression.72 Global def-
icits in DNA methylation are observed in T and B
cells from patients with lupus.73–75 CD4þ, but not
CD8þ, T lymphocytes display this hypomethyla-
tion,75,76 the degree of which correlates with disease
activity and anti-dsDNA antibody levels.77,78 Mice
injected with CD4þ cells that have been chemically
demethylated exhibit a lupus-like syndrome.79,80

Even individuals with drug-induced lupus exhibit
hypomethylation.81 The reduced gene methylation
in T cells, B cells, and mononuclear cells from
patients with lupus renders the patients hypersensi-
tive to IFN-induced inflammation,82 a hypersensi-
tivity that is preserved through the active stages of
the disease and is consistent with the chronic, recur-
rent nature of SLE.82

UV-A1 irradiation counteracts this demethylation
of genes in patients with lupus;78 UV-A1 photons
remethylate genes and have even been implicated
in global DNA hypermethylation.83 Accordingly,
full-body UV-A1 irradiation has the potential for
reversing what may be a major disease mechanism
in lupus, i.e. gene demethylation. Not surprisingly,
UV-B irradiation, well known to enhance disease
activity in lupus, promotes hypomethylation of
CD4þ T cell genes in patients with lupus.84

HO-1

HO-1 is a powerful homeostatic enzyme that
releases products with antioxidant, immunosup-
pressive, anti-inflammatory, antithrombotic,85

cytoprotective, and pro-survival actions.85–87 Its
deficiency exacerbates disease states. It is expressed
at low levels in patients with lupus,88 but its levels
are increased by UV-A1 photons through the sing-
let oxygen activation of the encoded HO-1
gene89–91 and through singlet oxygen-induced
reductions in the levels of IFN-gamma, a suppres-
sor of HO-1.11
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HO-1 is the 32-kDa rate-limiting enzyme in heme
catabolism92 that degrades the highly oxidizing
heme moiety into equimolar amounts of biliverdin,
iron, and carbon monoxide (CO). These down-
stream products of heme catabolism mediate the
antioxidant, antiapoptotic, antiproliferative, vaso-
dilatory, and anti-inflammatory effect of HO-193

that gives it restorative potential in patients with
lupus.86,87,93 Biliverdin reductase converts biliver-
din into bilirubin, and both have potent antioxi-
dant and anti-inflammatory activities as reactive
oxygen species scavengers. The oxidant Fe elicits
the production of ferritin, which can sequester Fe,
making ferritin too, a virtual anti-oxidant. CO, a
gas with unique anti-inflammatory, neuroprotec-
tive, and mitochondrial actions,94 has the widest
therapeutic potential of all the heme degradation
products.

HO-1 is expressed in virtually every cell in the
body95 and is upregulated in mammalian tissues in
response to a wide variety of conditions, including
vascular and immune injury, ischemia, inflamma-
tion, cell cycle dysregulation, and both sublethal
and lethal cell damage.96,97 The UV-A1-mediated
induction of HO-1 expression begins in the skin,
the largest organ in the body and the major site
of UV exposure. Dermal phospholipids contain
polyunsaturated fatty acids that are highly prone
to singlet oxygen-induced peroxidation, forming
oxidized phospholipids98,99 that induce the expres-
sion of the HO-1 gene.100 Although UV-A1 irradi-
ation activates singlet oxygen for only a few
nanoseconds, the resulting increase in the HO-1
levels in epidermal cells and cells infiltrating or cir-
culating through the skin lasts for up to three
days,101 sufficient time for HO-1 to act locally
and in distant tissues. The low levels of HO-1 in
patients with lupus88 may contribute to the vulner-
ability of patients to common stressful stimuli, such
as viral infections, toxic substances, and lipopoly-
saccharides,102 and to their enhanced susceptibility
to endothelial damage, all of which are among the
aberrations that stand to be remediated by singlet
oxygen-generated HO-1.102

HO-1 and coronary artery disease

The peak value of HO-1 in lupus may be its impact
on coronary artery disease. Patients with lupus
have a markedly increased prevalence of coronary
artery atherosclerosis and an early age of onset.103

The incidence of myocardial infarction is up to 50
times the United States national average.104

Consistent with a role for HO-1 in this disease, ani-
mals with low HO-1 levels develop myocardial
infarctions (MIs) more readily in response to ische-
mia than animals with normal HO-1 levels.105 In
HO-1 transgenic animals, the frequency of MI is
inversely proportional to the level of HO-1.106 In
humans, the HO-1-mediated catalysis of heme, a
powerful antioxidant, into the antioxidant biliver-
din, which converts into another antioxidant, bili-
rubin, reduces post-ischemic and post-infarction
myocardial dysfunction.107 Additionally, HO-1
and its product CO promote neovascularization
after MI by modulating the expression of
hypoxia-inducible factor-1 (HIF-1), stromal cell-
derived factor-1 alpha (SDF-1 alpha), and vascular
endothelial growth factor-B (VEGF-B).108

HO-1 also downregulates hypertension, hyper-
lipidemia, diabetes, obesity, and atheroscler-
osis,109–111 i.e. metabolic syndrome, actions that
contribute to the potential for HO-1 to decrease
coronary artery disease. Bilirubin, which is pro-
duced from HO-1-generated biliverdin, is nega-
tively associated with hemoglobin A1C levels,
metabolic syndrome, and insulin resistance.112

The capacity of HO-1 to restore homeostasis is
well-suited to reverse the disarray induced by cor-
onary artery disease and the metabolic syndrome in
patients with lupus.

HO-1 and the central nervous system (CNS)

The effects of HO-1 and its products in the CNS
add further to their therapeutic potential in
lupus.6,8,12 For a start, full-body UV-A1 irradiation
mitigates ‘‘brain fog,’’ a common and often major
complaint in patients with lupus.6,12 This cognitive
dysfunction, which presents as decreased attentive-
ness, memory deficits, diminished problem-solving
capability, and decreases in information organiza-
tion, is frequently the most immediate and gratify-
ing effect of UV-A1 irradiation therapy.6,8,12 HO-1
exhibits potential neuroprotective effects through
the anti-inflammatory,94,113,114 anti-apoptotic,115

and vasodilatory properties of CO. In concert
with nitric oxide (NO),116 CO binds to and acti-
vates soluble guanylate cyclase (sGC),117 a heme-
containing protein that mediates smooth muscle
relaxation, inhibits inflammation, and abrogates
ischemic insult to neuronal cells.118 Increases in
the propensity for thrombosis85 and in cerebral
vasospasm119 are changes observed in the HO-1-
deficient mouse. In addition to modulating cerebral
vascular resistance, the combination of sGC and
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GMP enhances neurotransmission and improves
learning and memory, which are commonly
impaired in patients with SLE and improved by
UV-A1 irradiation.3–9

Packaging CO

The extensive benefits of the homeostatic and cyto-
protective actions of CO have prompted an
onslaught of research into delivery methods for
CO.120–122 In contrast to the currently recom-
mended invasive methods, full-body UV-A1 irradi-
ation is a simpler, safer, gentler, and more
physiological means for inducing systemic HO-1.
In addition to its effects on lupus, there is compel-
ling evidence that low-dose CO can be therapeutic
in a wide array of conditions,123 pointing to a wider
usefulness for its progenitor, UV-A1 irradiation.124

Pulmonary disease in SLE

Currently, the only patient with interstitial lung dis-
ease (ILD) and pulmonary hypertension (PH) who
was treated with UV-A1 irradiation was a 36-year-
old Caucasian woman with antinuclear antibody
(ANA)/anti-Sjögren syndrome-related antigen A
(SSA)-positive lupus for a duration of five years.13

She had been taking 400mg of hydroxychloroquine
and 6mg of methylprednisolone for the previous

year, without a significant effect. Within weeks of
starting triweekly full-body UV-A1 irradiation at
8 J/cm2, her symptoms of fatigue, malar rash, poly-
arthritis, mouth ulcers, and intermittent pleurisy
abated. The gains were maintained for months
with biweekly irradiation treatments, during
which time her ILD and PH also responded. She
experienced decreases in dyspnea and an increase in
the diffusing capacity of the lung for carbon dioxide
(DLCO) from 65% to 105% of the predicted value
(Figure 3), and her pulmonary artery pressures
decreased from 45 to 25mm Hg. The improvement
in both ILD and PH progressed over the years,
despite the continued weaning of her corticosteroid
treatments from 6mg to zero per day and the deliv-
ery of a healthy baby.

Comment

One team of researchers investigating UV-A1
irradiation reported that four patients with lupus
and dyspnea experienced a decrease in their dys-
pneic symptoms after the UV-A1 irradiation treat-
ment.9 The present investigator treated the only
patient with established ILD and PH13 and that
patient responded with reversal of the ILD and
PH therapy.13 As UV-A1-generated singlet
oxygen activates HO-1125 and HO-1 degrades the
powerful oxidant heme, splitting it into products
with properties capable of inhibiting interstitial
inflammation, endothelial apoptosis, and smooth
muscle proliferation,126–131 three distinguishing
characteristics of ILD/PH, it seems reasonable
that it was the UV-A1-induced HO-1 underpinning
the resolution of disease in this patient.

To explain more fully, HO-1, in degrading the
powerful oxidant heme, releases biliverdin, an anti-
oxidant, which is converted to bilirubin, an anti-
oxidant, and Fe, an inducer of ferritin, another
antioxidant, the antioxidants having anti-inflam-
matory activity.87 CO, through its effects on mito-
chondrial respiration, downregulates inflammatory
processes94 but perhaps as pertinent, CO reverses
established PH in mice127 by activating p38 mito-
gen-activated protein kinase (MAPK).86,128 The
activation of p38 MAPK fosters gene-controlled
protection of endothelial cells from apoptosis129

and promotes re-endothelialization,85 actions that
dampen the rheologic disruption that is often cen-
tral to PH. CO in addition, increases cGMP, which
relaxes smooth muscles in the pulmonary arteries130

and inhibits nuclear factor (NF)-kB-mediated
smooth muscle proliferation, both actions running
counter to the development of PH.131
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Figure 3 Yearly diffusing capacity of the lung for carbon
dioxide (DLCO) measurements from the patient receiving 30-
minute biweekly, full-body, low-dose ultraviolet (UV)-A1 irra-
diation at 8 J/cm2 for four years at which time the therapy was
unavoidably d/c’d, following which the DLCO declined preci-
pitously over the 5th year. CT: computed tomography.
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Less direct, but not to be dismissed as contribut-
ing to the mitigation of PH and ILD in lupus, is the
role of singlet oxygen in reducing the levels of antic-
ardiolipin (aCL) antibodies,12 which are linked to
thrombosis, sometime contributing to the gener-
ation of PH,132 and the singlet oxygen-related
decreases in levels of SSA,5 elevated in patients
with lupus and ILD.133

In summary, UV-A1 photons appear to have
brought reversal of lupus-related ILD/PH through
activation of pathways almost perfectly suited for
combatting this disease spectrum.

Subacute cutaneous lupus (SCLE)

Comment

SCLE is a subtype of lupus resulting from apop-
tosis involving antigen translocation. Normally,
following exposure to shorter UV wavelengths,
such as UV-B, the extractable nuclear antigens
Sjögren syndrome A, Sjögren syndrome B,

ribonucleoprotein, and Smith, of human epidermal
cells, normally translocate from the nucleus to the
cytoplasm and then to the cell membrane during
apoptosis.19,134,135 When these antigens reach
developing apoptotic blebs136 in patients with
SLE, they bind to their respective circulating auto-
antibody on the bleb surface, resulting in either
antibody-dependent cytotoxicity and cell lysis137

or the transport of lupus antigen-antibody com-
plexes into the cell.133,138 Lysis results in the release
of autoantigens, inflammatory mediators, and
viruses136 into circulation, whereas the transport
of antigen-antibody complexes into cells promotes
cellular dysfunction. In effect, antibodies to Sjögren
syndrome A and other nuclear antigens convert
translocation, a physiologic process, into a patho-
logic one in patients with lupus.

Unlike UV-B and the other shorter wavelengths
of UV, UV-A1 wavelengths not only fail to activate
translocation but counter this action in SCLE5,139

(Figure 4), primarily by triggering immediate apop-
tosis,37,38 which preempts extractable nuclear anti-
gen translocation-induced apoptosis, which is a

Figure 4 Before and after photos of a 38-year-old woman with subacute cutaneous lupus (SCLE) who was treated with low-dose,
full-body ultraviolet (UV)-A1 irradiation. The patient had been disabled and house-bound for four years because of cutaneous
eruptions, joint pain, and fatigue that were resistant to three years of prednisone and hydroxychloroquine sulfate treatments. Top
left: annular serpiginous cutaneous eruption of SCLE. Top right: palmer erythema and dorsal interphalangeal eruptions on her
fingers. Lower panels: the same regions following three weeks of daily low-dose UV-A1 irradiation treatment, showing complete
elimination of the SCLE. Her joint pain and fatigue responded concomitantly with the rash. She arose from her sick bed and went
back to work for the first time in four years.
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delayed apoptosis. The striking response of SCLE to
UV-A1 irradiation is another favorable effect of sing-
let oxygen-induced immediate apoptosis. This rapid
apoptosis eliminates the cell before extractable
nuclear antigens can migrate to the membrane blebs
to effect lysis. UV-A1 wavelengths also reduce the
levels of circulating precipitating SSA antibodies
that bind to one of the translocating antigens.5

Discoid lupus

UV-A1 therapy reversed discoid lesions in a total of
three patients.8,140 However, in the third patient,
the discoid lesions were intentionally well-covered
during the full-body irradiation.8 Although the
reversal in the first two patients indicated a direct
effect of the UV-A1 photons, the remission of the
covered rash implicated a systemic UV-A1 effect,
making discoid lupus, at least in part, a systemic
disease and supporting the systemic action of low-
dose full body UV-A1 irradiation therapy.

Antiphospholipid (aPL) antibodies

A 32-year-old woman with lupus and with high
levels of aCL antibodies was treated with long-
term, low-dose, full-body UV-A1 irradiation.13

She had a five-year history of progressive memory
loss, diminished concentration, and livedo reticu-
laris. Her IgM aCL antibody level was 44 MPL
(IgM phospholipid U/ml, normal range: 0–9
MPL/ml), and her IgA and IgG aCL levels were
within normal limits. Her score on systemic lupus
activity measure–revised (SLAM-R), a validated
measure of SLE disease activity, was 14. She was
photosensitive, with a malar rash, inflammatory
polyarthropathy, chronic cutaneous discoid lupus,
and positive for ANA, which comprise the six cri-
teria for the diagnosis of SLE. Her disease began at
age 18, with photosensitivity, a malar rash, a
biopsy-proven discoid rash and subsequently,
severe polyarthritis. Initiation of hydroxychloro-
quine treatment decreased the joint pain, but not
the rash. Intermittent courses of prednisone begin-
ning at age 24 had little effect on her progressive
cognitive impairment. At the time of presentation,
she was unemployed, having discontinued work
because of joint pain, fatigue, memory loss, and
other cognitive deficits. She rarely took her hydro-
xychloroquine, but did use ibuprofen as needed for
joint pain. She did not take any other medication.
She responded to low-dose, full-body UV-A1

irradiation with a cessation of her progressive
dementia, an abatement of the livedo reticularis, a
decrease in her aCL levels from 45 to 3 (Figure 5), a
reversal of global clinical activity and a cessation of
changes in positron-emission tomography during
eight months of treatment with biweekly, low-
dose (10 J/cm2) UV-A1 irradiation therapy. The
sedimentation rate dropped from 37 to 14
Svedberg units, and the ANA and SSA levels
were unchanged at 1:640.

The patient’s cognitive function improved as the
aCL antibody levels decreased to normal levels and
the patient’s symptoms and signs of SLE abated
during low-dose, full-body UV-A1 irradiation.
Livedo reticularis reversed and both clinical and
positron-emission tomography scanning revealed
a cessation of the patient’s progressive cognitive
decline. The trio of elevated aCL antibodies,
livedo reticularis, and cognitive decline constituted
an SLE-related antiphospholipid complex. The vir-
tual elimination of this complex with a parallel
improvement in the SLAM-R score in the absence
of corticosteroid therapy indicated that the full-
body UV-A1 therapy was responsible for the
improvements.

In a departure from the accepted paradigm that
aCL antibodies induce thrombosis, the results of
this study are also consistent with an alternative
hypothesis for the pathophysiology, namely, that
aCL antibodies protect against thrombosis.
Phosphatidylcholine (PS) is a membrane compo-
nent of apoptotic bodies that is a central mediator
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Figure 5 The effects of biweekly, 10 J/cm2, full-body ultravio-
let (UV)-A1 irradiation treatments on the anticardiolipin anti-
bodies (aCL) levels are shown. The aCL levels exhibited a
slight decrease during the first month, decreased to normal
levels within nine months, and remained at normal levels as
the patient continued with weekly irradiation treatments.
SLAM: systemic lupus activity measure.
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of apoptosis.141 During apoptosis, PS translocates
from the cytosolic side of the membrane to its outer
surface in a process catalyzed by the enzyme scram-
blase.142 Externalized PS facilitates macrophage
engulfment by serving as a bridge that enables
macrophages to engulf the apoptotic body.143,144

However, PS also increases the procoagulant pro-
clivity of apoptotic bodies.27,145–147 When apop-
totic bodies abound, the thrombotic propensity
increases.

Beta2 glycoprotein 1 (B2GP1), also known as
lipoprotein H, is a positively charged phospholi-
pid-binding serum protein that protects against
the prothrombotic apoptotic bodies by binding
and thus blocking the negatively charged externa-
lized PS responsible for their prothrombotic pro-
clivity. B2GP1 also acts as an opsonin, enhancing
the capacity of macrophages to clear the apoptotic
bodies. The binding of B2GP1 induces structural
changes in both B2GP1 and membrane-bound car-
diolipin, precipitating the generation of antibodies
directed against both.148–151 When bound, these
antibodies increase the strength of binding between
B2GP1 and the apoptotic bodies 30-fold.151,152 aCL
antibodies, like B2GP1, exhibit opsonic activ-
ity;153,154 the two opsonins facilitate the bridging
and subsequent engulfment of apoptotic bodies by
macrophages,149 reducing the procoagulant activity
of PS in the membrane. This is consistent with the
finding that the injection of apoptotic bodies into
mice elicits aCL antibody production.155 The opso-
nic activity of aCL antibodies may be more effect-
ive than most opsonins because of the direct
binding of the antibody to the macrophage Fc
receptor.156

Consistent with an antithrombotic role for aPL
antibodies and B2GP1, aCL antibodies and B2GP1
exhibit anticoagulant activity in vitro and in vivo,
respectively.155,157,158 In summary, although
increases in aCL antibody levels have been thought
to play a causative role in coagulopathy and throm-
bosis,159 they may instead serve as both a sentinel
of and a deterrent to thrombosis.

Lupus and pregnancy

The mother and unborn child are protected by the
UV-A1-mediated decreases in global systemic dis-
ease, as described throughout this manuscript. The
removal of apoptotic bodies reduces the thrombotic
threat to the placenta. Singlet oxygen-induced acti-
vation of HO-1 is of singular value. This enzyme
attenuates inflammatory cellular damage in

placental villous explants.160 The induction of
HO-1 also compensates for the downregulation of
HO-1 in the lupus placenta that predisposes the
woman to preeclampsia and recurrent miscar-
riages.161 Moreover, the HO-1 products, biliver-
din/bilirubin, ferritin, and CO, play augmentative
roles in angiogenesis and placental vascular devel-
opment162 as well as in the regulation of vascular
tone during pregnancy.160 Elevations of abnor-
mally low HO-1 levels have a telling therapeutic
value in pregnant patients with lupus.161 The UV-
A1 irradiation-generated decreases in SSA5 and
aCL12 antibodies reflect reductions in two major
risks in pregnant patients with lupus. Precipitating
SSA antibodies are positively associated with neo-
natal lupus163 and aCL antibodies are associated
with preeclampsia, intrauterine growth retardation,
and neonatal antiphospholipid syndrome.164

Summary

In the first use of long-wavelength UV irradiation
for treatment of a systemic disease, UV-A1 wave-
lengths had a healing action on SLE, a disease
known for its toxic sensitivity to the shorter UV
wavelengths. The deeply penetrating UV-A1 pho-
tons appear to restore apoptosis and accelerate the
removal of apoptotic bodies, both actions acting to
prevent necrosis and its sequelae of inflammation
and thrombosis. These long wavelengths also sup-
press B cell activity, enhance CMI, deter an epigen-
etic march toward SLE, activate the gene for HO-1,
ameliorate SCLE and discoid lupus, attenuate PH
and ILD, and are associated with decreases in the
levels of aCL antibodies. This noninvasive, readily
controlled, and relatively innocuous therapy has
benefits that justify its continued use and further
research into its effectiveness as a treatment for
lupus.
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